138 - 62 不同路径
题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2 输出: 3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。
向右 -> 向右 -> 向下
向右 -> 向下 -> 向右
向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3 输出: 28
解答
感觉就是动态规划的题dp[i][j] = dp[i-1][j] + dp[i][j-1]
然后第一行和第一列都是1
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
ans = [[1]*n] + [[1]+[0] * (n-1) for _ in range(m-1)]
for i in range(1, m):
for j in range(1, n):
ans[i][j] = ans[i-1][j]+ans[i][j-1]
return ans[m-1][n-1]
Runtime: 28 ms, faster than 98.61% of Python3 online submissions for Unique Paths.
Memory Usage: 12.7 MB, less than 100.00% of Python3 online submissions for Unique Paths.
但是最后生成的这个矩阵是对称矩阵,也就是说只需要算一半就行了
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
cur = [1] * n
for _ in range(1, m):
for j in range(1, n):
cur[j] += cur[j-1]
print("cur", cur)
return cur[-1]
Runtime: 32 ms, faster than 93.07% of Python3 online submissions for Unique Paths.
Memory Usage: 12.7 MB, less than 100.00% of Python3 online submissions for Unique Paths.
反而变慢了哈哈😂
var uniquePaths = function(m, n) {
let cur = new Array(n)
for (let i = 0; i < n; i++) {
cur[i] = 1
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
cur[j] += cur[j - 1]
}
}
return cur[cur.length - 1]
};
Runtime: 60 ms, faster than 39.27% of JavaScript online submissions for Unique Paths.
Memory Usage: 34.1 MB, less than 54.55% of JavaScript online submissions for Unique Paths.
func uniquePaths(m int, n int) int {
cur := make([]int, n)
for i := 0; i < n; i++ {
cur[i] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
cur[j] += cur[j-1]
}
}
return cur[len(cur)-1]
}
Runtime: 0 ms, faster than 100.00% of Go online submissions for Unique Paths.
Memory Usage: 2 MB, less than 100.00% of Go online submissions for Unique Paths.
Last updated
Was this helpful?