138 - 62 不同路径

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

img

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2 输出: 3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下

  2. 向右 -> 向下 -> 向右

  3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3 输出: 28

解答

感觉就是动态规划的题dp[i][j] = dp[i-1][j] + dp[i][j-1]

然后第一行和第一列都是1

Runtime: 28 ms, faster than 98.61% of Python3 online submissions for Unique Paths.

Memory Usage: 12.7 MB, less than 100.00% of Python3 online submissions for Unique Paths.

但是最后生成的这个矩阵是对称矩阵,也就是说只需要算一半就行了

Runtime: 32 ms, faster than 93.07% of Python3 online submissions for Unique Paths.

Memory Usage: 12.7 MB, less than 100.00% of Python3 online submissions for Unique Paths.

反而变慢了哈哈😂

Runtime: 60 ms, faster than 39.27% of JavaScript online submissions for Unique Paths.

Memory Usage: 34.1 MB, less than 54.55% of JavaScript online submissions for Unique Paths.

Runtime: 0 ms, faster than 100.00% of Go online submissions for Unique Paths.

Memory Usage: 2 MB, less than 100.00% of Go online submissions for Unique Paths.

Last updated

Was this helpful?