211 - 329 矩阵中的最长递增路径
题目
给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
示例 1:
输入: nums = [ [9,9,4], [6,6,8], [2,1,1] ] 输出: 4 解释: 最长递增路径为 [1, 2, 6, 9]。
示例 2:
输入: nums = [ [3,4,5], [3,2,6], [2,2,1] ] 输出: 4 解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。
解答
每个格子查深度优先,上下左右看看有没有更大的数字
然后拿个小本本记一下,每个格子最多能走多远
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
M, N = len(matrix), len(matrix[0])
dp = [[0]*N for i in range(M)]
def dfs(i, j):
if not dp[i][j]:
val = matrix[i][j]
dp[i][j] = 1+max(
dfs(i-1, j) if i and val > matrix[i-1][j] else 0,
dfs(i+1, j)if i < M-1 and val > matrix[i+1][j] else 0,
dfs(i, j-1)if j and val > matrix[i][j-1] else 0,
dfs(i, j+1)if j < N-1 and val > matrix[i][j+1] else 0,
)
return dp[i][j]
return max(dfs(x, y) for x in range(M) for y in range(N))
Runtime: 376 ms, faster than 94.19% of Python3 online submissions for Longest Increasing Path in a Matrix.
Memory Usage: 13.2 MB, less than 100.00% of Python3 online submissions for Longest Increasing Path in a Matrix.
这个版本更好理解
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
row, col = len(matrix), len(matrix[0])
dp = [[0]*col for i in range(row)]
def dfs(i, j):
if dp[i][j] != 0:
return dp[i][j]
res = 1
for x, y in [[-1, 0], [1, 0], [0, 1], [0, -1]]:
tmp_i = x+i
tmp_j = y+j
if tmp_i >= 0 and tmp_i < row and tmp_j >= 0 and tmp_j < col and \
matrix[tmp_i][tmp_j] > matrix[i][j]:
res = max(res, 1+dfs(tmp_i, tmp_j))
dp[i][j] = max(res, dp[i][j])
return dp[i][j]
return max(dfs(x, y) for x in range(row) for y in range(col))
Runtime: 892 ms, faster than 5.10% of Python3 online submissions for Longest Increasing Path in a Matrix.
Memory Usage: 13.4 MB, less than 92.31% of Python3 online submissions for Longest Increasing Path in a Matrix.
Last updated
Was this helpful?