181 - 208 实现前缀树Trie
题目
实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作。
示例:
Trie trie = new Trie();
trie.insert("apple"); trie.search("apple"); // 返回 true trie.search("app"); // 返回 false trie.startsWith("app"); // 返回 true trie.insert("app"); trie.search("app"); // 返回 true
说明:
- 你可以假设所有的输入都是由小写字母 a-z 构成的。 
- 保证所有输入均为非空字符串。 
解答
题解把前缀树应用说的很好呀,搜索自动补全、打字预测等等。
前缀树,就是根据字符串前缀来匹配的,数据结构。

哈希表嵌套
https://leetcode.com/problems/implement-trie-prefix-tree/discuss/58834/AC-Python-Solution
每个字母都是一个key,嵌套哈希表。
最后推入一个#,来表明单词的结束。不然app和apple就无法区分了。
class Trie:
    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.data = {}
    def insert(self, word: str) -> None:
        """
        Inserts a word into the trie.
        """
        d = self.data
        for w in word:
            if w not in d:
                d[w] = {}
            d = d[w]
        d["#"] = '#'
    def search(self, word: str) -> bool:
        """
        Returns if the word is in the trie.
        """
        return self.startsWith(word+"#")
    def startsWith(self, prefix: str) -> bool:
        """
        Returns if there is any word in the trie that starts with the given prefix.
        """
        d = self.data
        for w in prefix:
            if w not in d:
                return False
            else:
                d = d[w]
        return TrueRuntime: 112 ms, faster than 99.90% of Python3 online submissions for Implement Trie (Prefix Tree).
Memory Usage: 26.1 MB, less than 66.67% of Python3 online submissions for Implement Trie (Prefix Tree).
用node
class TrieNode:
    def __init__(self):
        from collections import defaultdict
        self.children = defaultdict(TrieNode)
        self.isEnd = False
class Trie:
    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.root = TrieNode()
    def insert(self, word: str) -> None:
        """
        Inserts a word into the trie.
        """
        node = self.root
        for w in word:
            node = node.children[w]
        node.isEnd = True
    def search(self, word: str) -> bool:
        """
        Returns if the word is in the trie.
        """
        node = self.root
        for w in word:
            node = node.children.get(w)
            if node is None:
                return False
        return node.isEnd
    def startsWith(self, prefix: str) -> bool:
        """
        Returns if there is any word in the trie that starts with the given prefix.
        """
        node = self.root
        for w in prefix:
            node = node.children.get(w)
            if node is None:
                return False
        return TrueRuntime: 216 ms, faster than 32.09% of Python3 online submissions for Implement Trie (Prefix Tree).
Memory Usage: 31.5 MB, less than 7.41% of Python3 online submissions for Implement Trie (Prefix Tree).
Last updated
Was this helpful?