35 - 杨辉三角2
题目
给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。

在杨辉三角中,每个数是它左上方和右上方的数的和。
示例:
输入: 3 输出: [1,3,3,1]
进阶:
你可以优化你的算法到 O(k) 空间复杂度吗?
解答
返回第k行,拿到题目就有两个想法。【其实是在返回k+1行,第一行他没算】
可以直接把杨辉三角的代码,返回最后一行;
var getRow = function (rowIndex) {
const result = [];
for (let i = 0; i < rowIndex + 1; i++) {
const subArr = [1];
for (let j = 1; j <= (i >>> 1); j++) {
subArr[j] = result[i - 1][j - 1] + result[i - 1][j];
}
for (let k = (i >>> 1) + 1; k <= i; k++) {
subArr[k] = subArr[i - k]
}
result.push(subArr);
}
return result[result.length - 1]
};
Runtime: 56 ms, faster than 61.34% of JavaScript online submissions for Pascal's Triangle II.
Memory Usage: 33.9 MB, less than 65.19% of JavaScript online submissions for Pascal's Triangle II.
也有数学方法可以直接得出某一行的代码。
/**
* @param {number} rowIndex
* @return {number[]}
*/
var getRow = function (numRows) {
let res = [];
for (let i = 0; i < numRows + 1; i++) {
res.push(C(numRows, i))
}
return res;
};
/**
* 组合数
* @param n
* @param r
* @returns {number}
* @constructor
*/
const C = function (n, r) {
if (n === 0) return 1;
return F(n) / F(r) / F(n - r);
}
/**
* 阶乘
* @param n
* @returns {number}
* @constructor
*/
const F = function (n) {
var s = 1;
for (var i = 1; i <= n; i++) {
s *= i;
}
return s;
}
// 阶乘也可以用尾递归写:
var factor = function (n, total = 1) {
if (n === 1) {
return 1
} else {
return factor(n - 1, n * total)
}
}
Runtime: 48 ms, faster than 93.64% of JavaScript online submissions for Pascal's Triangle II.
Memory Usage: 34.3 MB, less than 33.33% of JavaScript online submissions for Pascal's Triangle II.
Last updated
Was this helpful?