225 - 416 分割等和子集
题目
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意:
每个数组中的元素不会超过 100 数组的大小不会超过 200 示例 1:
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
解答
参考01背包问题和李威威大佬的解答
class Solution:
def canPartition(self, nums: List[int]) -> bool:
n = len(nums)
target = sum(nums)
if target % 2 != 0:
return False
target //= 2
dp = [[False]*(target+1) for _ in range(n)]
dp[0][0] = True
for i in range(1, target+1):
if nums[0] == i:
dp[0][i] = True
break
for i in range(1, n):
for j in range(target+1):
if j >= nums[i]:
dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i]]
else:
dp[i][j] = dp[i-1][j]
return dp[-1][-1]
Runtime: 1676 ms, faster than 25.09% of Python3 online submissions for Partition Equal Subset Sum.
Memory Usage: 16.3 MB, less than 9.09% of Python3 online submissions for Partition Equal Subset Sum.
class Solution:
def canPartition(self, nums: List[int]) -> bool:
n = len(nums)
target = sum(nums)
if target % 2 != 0:
return False
target //= 2
dp = [False]*(target+1)
dp[0] = True
for i in range(1, n):
for j in range(target, nums[i]-1, -1):
dp[j] = dp[j] or dp[j-nums[i]]
return dp[-1]
Runtime: 780 ms, faster than 48.92% of Python3 online submissions for Partition Equal Subset Sum.
Memory Usage: 12.7 MB, less than 100.00% of Python3 online submissions for Partition Equal Subset Sum.
Last updated
Was this helpful?