155 - 96 不同的二叉搜索树
题目
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
解答
动态规划
设n个节点存在二叉排序树的个数是G(n)
设f(i)为以i为根的二叉搜索树的个数
那么$G(n)=f(1)+f(2)+f(3)+f(4)+...+f(n)$
那么$f(i)=G(i-1)*G(n-1)$
因为是二叉搜索树,左边的子节点,都要比$i$小,共有$i-1$个;右边子节点,都要比$i$大,共$n-i$个
所以带入得
$G(n)=G(0)∗G(n−1)+G(1)∗G(n−2)+...+G(n−1)∗G(0)$
class Solution:
def numTrees(self, n: int) -> int:
g = [0]*(n+1)
g[0] = g[1] = 1
for i in range(2, n+1):
for j in range(1, i+1):
g[i] += g[j-1]*g[i-j]
return g[n]
Runtime: 24 ms, faster than 96.30% of Python3 online submissions for Unique Binary Search Trees.
Memory Usage: 12.6 MB, less than 100.00% of Python3 online submissions for Unique Binary Search Trees.
var numTrees = function(n) {
let g = new Array(n + 1).fill(0)
g[0] = g[1] = 1
for (let i = 2; i < n + 1; i++) {
for (let j = 1; j < i + 1; j++) {
g[i] += g[j - 1] * g[i - j]
}
}
console.log("g", g[n])
return g[n]
};
Runtime: 56 ms, faster than 53.22% of JavaScript online submissions for Unique Binary Search Trees.
Memory Usage: 33.9 MB, less than 33.33% of JavaScript online submissions for Unique Binary Search Trees.
func numTrees(n int) int {
g := make([]int, n+1)
g[0] = 1
g[1] = 1
for i := 2; i <= n; i++ {
for j := 1; j <= i; j++ {
g[i] += g[j-1] * g[i-j]
}
}
return g[n]
}
Runtime: 0 ms, faster than 100.00% of Go online submissions for Unique Binary Search Trees.
Memory Usage: 2 MB, less than 100.00% of Go online submissions for Unique Binary Search Trees.
卡塔兰数
简言之有个公式可以算出来这个
class Solution:
def numTrees(self, n: int) -> int:
c = 1
for i in range(0, n):
c = c*2*(2*i+1)/(i+2)
return int(c)
Runtime: 24 ms, faster than 96.30% of Python3 online submissions for Unique Binary Search Trees.
Memory Usage: 12.8 MB, less than 100.00% of Python3 online submissions for Unique Binary Search Trees.
func numTrees(n int) int {
c := 1
for i := 0; i < n; i++ {
c = c * 2 * (2*i + 1) / (i + 2)
}
return c
}
Runtime: 0 ms, faster than 100.00% of Go online submissions for Unique Binary Search Trees.
Memory Usage: 2 MB, less than 100.00% of Go online submissions for Unique Binary Search Trees.
var numTrees = function(n) {
let c = 1
for (let i = 0; i < n; i++) {
c = c * 2 * (2 * i + 1) / (i + 2)
}
return c
};
Runtime: 48 ms, faster than 91.71% of JavaScript online submissions for Unique Binary Search Trees.
Memory Usage: 33.7 MB, less than 66.67% of JavaScript online submissions for Unique Binary Search Trees.
Last updated
Was this helpful?