222 - 486 预测赢家
题目
给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。
给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。
示例 1:
输入: [1, 5, 2] 输出: False 解释: 一开始,玩家1可以从1和2中进行选择。 如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。 所以,玩家1的最终分数为 1 + 2 = 3,而玩家2为 5。 因此,玩家1永远不会成为赢家,返回 False。
示例 2:
输入: [1, 5, 233, 7] 输出: True 解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。 最终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。
注意:
1 <= 给定的数组长度 <= 20.
数组里所有分数都为非负数且不会大于10000000。
如果最终两个玩家的分数相等,那么玩家1仍为赢家。
解答
https://leetcode-cn.com/problems/predict-the-winner/solution/java-dong-tai-gui-hua-by-zxy0917-2/
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
n = len(nums)
dp = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
dp[i][i] = nums[i]
for i in range(n)[::-1]:
for j in range(i+1, n):
dp[i][j] = max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1])
return dp[0][n-1] >= 0
Runtime: 24 ms, faster than 97.70% of Python3 online submissions for Predict the Winner.
Memory Usage: 12.8 MB, less than 100.00% of Python3 online submissions for Predict the Winner.
另一种做法:
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
n = len(nums)
dp = [[0 for _ in range(n)] for _ in range(n)]
for i in range(n):
dp[i][i] = nums[i]
for l in range(1, n):
for i in range(n-l):
j = i+l
dp[i][j] = max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1])
return dp[0][n-1] >= 0
Runtime: 28 ms, faster than 91.01% of Python3 online submissions for Predict the Winner.
Memory Usage: 12.7 MB, less than 100.00% of Python3 online submissions for Predict the Winner.
自顶向下
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
n = len(nums)
memo = [[-1 for _ in range(n)] for _ in range(n)]
def predict(i, j):
if i > j:
return 0
elif i == j:
return nums[i]
if memo[i][j] != -1:
return memo[i][j]
curScore = max(nums[i]+min(predict(i+2, j), predict(i+1, j-1)),
nums[j]+min(predict(i, j-2), predict(i+1, j-1)))
memo[i][j] = curScore
return curScore
scoreFirst = predict(0, n-1)
scoreTotal = sum(nums)
return scoreFirst >= scoreTotal - scoreFirst
Runtime: 36 ms, faster than 43.09% of Python3 online submissions for Predict the Winner.
Memory Usage: 12.9 MB, less than 100.00% of Python3 online submissions for Predict the Winner.
Last updated
Was this helpful?