183 - 212 单词搜索2
题目
给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。
示例:
输入: words = ["oath","pea","eat","rain"] and board = [ ['o','a','a','n'], ['e','t','a','e'], ['i','h','k','r'], ['i','f','l','v'] ]
输出: ["eat","oath"]
说明:
你可以假设所有输入都由小写字母 a-z 组成。
提示:
你需要优化回溯算法以通过更大数据量的测试。你能否早点停止回溯?
如果当前单词不存在于所有单词的前缀中,则可以立即停止回溯。什么样的数据结构可以有效地执行这样的操作?散列表是否可行?为什么? 前缀树如何?如果你想学习如何实现一个基本的前缀树,请先查看这个问题: 实现Trie(前缀树)。
解答
根据提示,应该把words里面单词插入前缀树里面,回溯的时候调用startwith,如果没有了就弹出
字典树
https://leetcode-cn.com/problems/word-search-ii/solution/qian-zhui-shu-dfs-by-powcai/
这个就没用前缀树,就比较好理解吧😂
class Solution:
def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
trie = {}
for word in words:
t = trie
for w in word:
t = t.setdefault(w, {})
t["end"] = 1
print(trie)
res = []
row = len(board)
col = len(board[0])
direction = [(-1, 0), (1, 0), (0, 1), (0, -1)]
def dfs(i, j, trie, s):
c = board[i][j]
if c not in trie:
return
trie = trie[c]
if "end" in trie and trie["end"] == 1:
res.append(s+c)
trie["end"] = 0
board[i][j] = "#"
for x, y in direction:
tmp_i = x+i
tmp_j = y+j
if 0 <= tmp_i and tmp_i < row and 0 <= tmp_j \
and tmp_j < col and board[tmp_i][tmp_j] != "#":
dfs(tmp_i, tmp_j, trie, s+c)
board[i][j] = c
for i in range(row):
for j in range(col):
dfs(i, j, trie, "")
return res
Runtime: 280 ms, faster than 82.03% of Python3 online submissions for Word Search II.
Memory Usage: 28.7 MB, less than 91.67% of Python3 online submissions for Word Search II.
前缀树
class TrieNode():
def __init__(self):
self.children = collections.defaultdict(TrieNode)
self.isWord = False
class Trie():
def __init__(self):
self.root = TrieNode()
def insert(self, word):
node = self.root
for w in word:
node = node.children[w]
node.isWord = True
def search(self, word):
node = self.root
for w in word:
node = node.children.get(w)
if not node:
return False
return node.isWord
class Solution(object):
def findWords(self, board, words):
res = []
trie = Trie()
node = trie.root
for w in words:
trie.insert(w)
for i in range(len(board)):
for j in range(len(board[0])):
self.dfs(board, node, i, j, "", res)
return res
def dfs(self, board, node, i, j, path, res):
if node.isWord:
res.append(path)
node.isWord = False
if i < 0 or i >= len(board) or j < 0 or j >= len(board[0]):
return
tmp = board[i][j]
node = node.children.get(tmp)
if not node:
return
board[i][j] = "#"
self.dfs(board, node, i+1, j, path+tmp, res)
self.dfs(board, node, i-1, j, path+tmp, res)
self.dfs(board, node, i, j-1, path+tmp, res)
self.dfs(board, node, i, j+1, path+tmp, res)
board[i][j] = tmp
Runtime: 440 ms, faster than 30.82% of Python3 online submissions for Word Search II.
Memory Usage: 36 MB, less than 66.67% of Python3 online submissions for Word Search II.
Last updated
Was this helpful?